A Single Complete Relational Rule for Coalgebraic Refinement

نویسندگان

  • César Jesus Rodrigues
  • José Nuno Oliveira
  • Luís Soares Barbosa
چکیده

A transition system can be presented either as a binary relation or as a coalgebra for the powerset functor, each representation being obtained from the other by transposition. More generally, a coalgebra for a functor F generalises transition systems in the sense that a shape for transitions is determined by F, typically encoding a signature of methods and observers. This paper explores such a duality to frame in purely relational terms coalgebraic refinement, showing that relational (data) refinement of transition relations, in its two variants, downward and upward (functional) simulations, is equivalent to coalgebraic refinement based on backward and forward morphisms, respectively. Going deeper, it is also shown that downward simulation provides a complete relational rule to prove coalgebraic refinement. With such a single rule the paper defines a pre-ordered calculus for refinement of coalgebras, with bisimilarity as the induced equivalence. The calculus is monotonic with respect to the main relational operators and arbitrary relator F, therefore providing a framework for structural reasoning about refinement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transposing partial components - An exercise on coalgebraic refinement

A partial component is a process which fails or dies at some stage, thus exhibiting a finite, more ephemeral behaviour than expected (e.g. operating system crash). Partiality — which is the rule rather than exception in formal modelling — can be treated mathematically via totalization techniques. In the case of partial functions, totalization involves error values and exceptions. In the context...

متن کامل

Efficient Coalgebraic Partition Refinement

We present a generic partition refinement algorithm that quotients coalgebraic systems by behavioural equivalence, an important task in reactive verification; coalgebraic generality implies in particular that we cover not only classical relational systems but also various forms of weighted systems. Under assumptions on the type functor that allow representing its finite coalgebras in terms of n...

متن کامل

Coalgebraic completeness-via-canonicity for distributive substructural logics

We prove strong completeness of a range of substructural logics with respect to their relational semantics by completeness-via-canonicity. Specifically, we use the topological theory of canonical (in) equations in distributive lattice expansions to show that distributive substructural logics are strongly complete with respect to their relational semantics. By formalizing the problem in the lang...

متن کامل

Completeness via Canonicity for Distributive Substructural Logics: A Coalgebraic Perspective

We prove strong completeness of a range of substructural logics with respect to their relational semantics by completeness-viacanonicity. Specifically, we use the topological theory of canonical (in) equations in distributive lattice expansions to show that distributive substructural logics are strongly complete with respect to their relational semantics. By formalizing the problem in the langu...

متن کامل

Pointfree Factorization of Operation Refinement

The standard operation refinement ordering is a kind of “meet of opposites”: non-determinism reduction suggests “smaller” behaviour while increase of definition suggests “larger” behaviour. Groves’ factorization of this ordering into two simpler relations, one per refinement concern, makes it more mathematically tractable but is far from fully exploited in the literature. We present a pointfree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. Notes Theor. Comput. Sci.

دوره 259  شماره 

صفحات  -

تاریخ انتشار 2009